1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
package my3d;
public class _math3d {
public static final double DEG = Math.PI / 180;
private static double[][]
m_buf1 = new double[3][3],
m_buf2 = new double[3][3];
public static double[][] copy_matrix(double[][] m, double[][] mo) {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
mo[i][j] = m[i][j];
return mo;
}
public static double[] copy_vector(double[] v, double[] vo) {
for (int i = 0; i < 3; i++)
vo[i] = v[i];
return vo;
}
public static double[] set_vector(
double x, double y, double z,
double[] vo
) {
vo[0] = x; vo[1] = y; vo[2] = z;
return vo;
}
public static class _transform {
public double[][] ori = new double[3][3]; // 姿勢
public double[] pos = new double[3]; // 位置
public _transform(
double ax, double ay, double az,
double x, double y, double z
) {
eular(ax, ay, az, ori);
set_vector(x, y, z, pos);
}
}
public static double[][] rot_axis(int axis, double a, double[][] mo) {
a *= DEG;
double sa = Math.sin(a), ca = Math.cos(a);
int x = (axis + 1) % 3, y = (axis + 2) % 3;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i == j) mo[i][j] = ((i == axis) ? 1 : ca);
else if (i == x && j == y) mo[i][j] = sa;
else if (i == y && j == x) mo[i][j] = -sa;
else mo[i][j] = 0;
}
}
return mo;
}
public static double[][] rot_x(double a, double[][] mo) {
return rot_axis(0, a, mo);
}
public static double[][] rot_y(double a, double[][] mo) {
return rot_axis(1, a, mo);
}
public static double[][] rot_z(double a, double[][] mo) {
return rot_axis(2, a, mo);
}
public static double[][] eular(
double ax, double ay, double az,
double[][] mo
) {
rot_z(az, mo);
rot_y(ay, m_buf2); mul(m_buf2, mo, mo);
rot_x(ax, m_buf2); mul(m_buf2, mo, mo);
return mo;
}
public static _transform mul(
_transform tf1, _transform tf2,
_transform tfo
) {
mul(tf1.ori, tf2.ori, tfo.ori);
mul(tf1, tf2.pos, tfo.pos);
return tfo;
}
public static double[] mul(
_transform tf, double[] v,
double[] vo
) {
mul(tf.ori, v, vo);
return add(tf.pos, vo, vo);
}
public static double[][] mul(
double[][] m1, double[][] m2,
double[][] mo
) {
for (int i = 0; i < 3; i++)
mul(m1, m2[i], m_buf1[i]);
return copy_matrix(m_buf1, mo);
}
public static double[] mul(
double[][] m, double[] v,
double[] vo
) {
double x = v[0], y = v[1], z = v[2];
for (int i = 0; i < 3; i++)
vo[i] = m[0][i] * x + m[1][i] * y + m[2][i] * z;
return vo;
}
public static double[] add(double[] v1, double[] v2, double[] vo) {
vo[0] = v1[0] + v2[0];
vo[1] = v1[1] + v2[1];
vo[2] = v1[2] + v2[2];
return vo;
}
public static double[] sub(double[] v1, double[] v2, double[] vo) {
vo[0] = v1[0] - v2[0];
vo[1] = v1[1] - v2[1];
vo[2] = v1[2] - v2[2];
return vo;
}
public static double[] normalize(double[] v, double[] vo) {
double len = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
vo[0] = v[0] / len;
vo[1] = v[1] / len;
vo[2] = v[2] / len;
return vo;
}
public static double dot(double[] v1, double[] v2) {
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
public static double[] cross(double[] v1, double[] v2, double[] vo) {
double x, y;
x = v1[1] * v2[2] - v1[2] * v2[1];
y = v1[2] * v2[0] - v1[0] * v2[2];
vo[2] = v1[0] * v2[1] - v1[1] * v2[0];
vo[0] = x; vo[1] = y;
return vo;
}
public static double[] lerp(double[] v1, double[] v2, double t1, double[] vo) {
double t2 = (1 - t1);
vo[0] = v1[0] * t1 + v2[0] * t2;
vo[1] = v1[1] * t1 + v2[1] * t2;
vo[2] = v1[2] * t1 + v2[2] * t2;
return vo;
}
}